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ABSTRACT

A variational bias correction (VarBC) scheme is developed and tested using regional Weather Research and

Forecasting Model Data Assimilation (WRFDA) to correct systematic errors in aircraft-based measurements

of temperature produced by the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) system.

Various bias models were investigated, using one or all of aircraft height tendency, Mach number, temperature

tendency, and the observed temperature as predictors. These variables were expected to account for the rep-

resentation of some well-known error sources contributing to uncertainties in TAMDAR temperature mea-

surements. The parameters corresponding to these predictors were evolved in the model for a two-week period

to generate initial estimates according to each unique aircraft tail number. Sensitivity experiments were then

conducted for another one-month period. Finally, a case study usingVarBC of a cold front precipitation event is

examined. The implementation of VarBC reduces biases in TAMDAR temperature innovations. Even when

using a bias model containing a single predictor, such as height tendency orMach number, the VarBC produces

positive impacts on analyses and short-range forecasts of temperature with smaller standard deviations and

biases than the control run. Additionally, by employing a multiple-predictor bias model, which describes the

statistical relations between innovations and predictors, and uses coefficients to control the evolution of com-

ponents in the bias model with respect to their reference values, VarBC further reduces the average error of

analyses and short-range forecasts with respect to observations. The potential impacts of VarBC on precipita-

tion forecasts were evaluated, and the VarBC is able to indirectly improve the prediction of precipitation lo-

cation by reducing the forecast error for wind-related synoptic circulation leading to precipitation.

1. Introduction

Most, if not all, data assimilation systems assume ob-

servations are unbiased (Le Dimet and Talagrand 1986;

Parrish andDerber 1992; Barker et al. 2004; Huang et al.

2009; Shao et al. 2016). In these systems, the biases in

observations are linearly transferred into the analysis,

regardless of the specification of a gain operator (Dee

2005). Therefore, the systematic errors in observa-

tions and the representative errors must be corrected

to maximize the potential benefit of observations during

data assimilation.

To supplement existing in situ observing systems,

aircraft-based observing systems have been expanded

and a significantly increasing volume of such measure-

ments have been collected over the past three decades

(Drüe et al. 2008; Moninger et al. 2010). Tropospheric

Airborne Meteorological Data Reporting (TAMDAR)

sensors were developed in 2004 to improve mesoscale

numerical weather prediction. These sensors offer high

spatiotemporal resolution within the troposphere, where

the majority of convective activity originates. However,

aircraft-based measurements are subject to systematic

errors due to imperfect measurement techniques and

data processing procedures (World Meteorological

Organization 2003; Jacobs et al. 2014).Corresponding author: Feng Gao, gao.feng.nuist@gmail.com
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Biases in aircraft temperature data generally come

from the following primary sources: 1) incomplete cor-

rection of heating from adiabatic compression in the

sensor chamber, which is a function of Mach number

derived from total pressure and static pressure; 2) errors

in the Mach number itself;1 3) time lag due to slightly

wrong time stamp being associated with a particular

data point; 4) thermal lag or hysteresis in the probe

material and environment; and 5) aircraft maneuvering,

which is likely to make measurements become unsta-

ble and affect the estimation accuracies of air heating

caused by viscous friction and partial blocking of the

thermistor. Although some aircraft data are excluded

when the roll angle of aircraft is above a certain threshold,

data observed during the period of maneuvering is

possibly used when the maneuver is light.

Several investigations have addressed the biases of

aircraft temperature measurement. When comparing

with reference observations and background forecasts,

aircraft temperature data generally have a warm bias,

and the bias varies with the ascent and descent phases of

the aircraft, the aircraft type, and even slightly with

season (Drüe et al. 2008; Ballish and Kumar 2008). The

presence of a warm bias in aircraft temperature obser-

vations means that these data are not used optimally in

assimilation and may warm the analysis too much, al-

though some studies have reported forecast improve-

ments from using commercial aircraft data in regional

and global models (Cardinali et al. 2003; Moninger et al.

2010; Gao et al. 2012; Petersen 2016).

Various approaches to estimating observational bia-

ses have been reported. Several studies suggest com-

paring the observations with uncorrelated comparator

data, and then determining the bias by examining the

discrepancies. In general, fine-mesh short-range model

forecasts and observations with well-known accu-

racy are typically used as available comparator data.

Benjamin et al. (1999) estimated the observation errors

for Aircraft Communications Addressing and Report-

ing System (ACARS) by comparing with ACARS col-

lected by aircraft with different tail numbers in a

collocation study. Drüe et al. (2008) described the char-

acteristics of observational errors of Aircraft Meteoro-

logical Data Relay (AMDAR) measurements against

rawinsonde observations. In åreality, ACARS is a name

of communication system through which aircraft-based

reports are transmitted; AMDAR presents a complete

observing system including aircraft onboard sensor,

computers and communications systems where the

communication systems can be based on satellite or

ACARS. For simplicity, both ACARS and AMDAR

are often used to refer directly to the meteorological

observations in some studies (Benjamin et al. 1999).

Compared with ACARS and AMDAR installed on

airframes with long-range wide body, some TAMDAR

units are installed on small unmanned aerial systems

which provide more local weather information for high-

resolution models. Moninger et al. (2010) evaluated

TAMDAR observations by comparing them with the

Rapid Update Cycle (RUC) 1-h forecast. These re-

searches well addressed the pictures of aircraft obser-

vation errors. However, a noticeable disadvantage in

these collocation studies is that multiple error sources

involved in observations and references are combined in

the error estimations.

Bias correction for aircraft observations should not

aim to remove the biases present in the comparator

data to avoid drifting the model uniformly toward the

error in comparator. Additionally, the bias in aircraft

observations is ever-changing, and at each analysis

time, different error sources may dominate (World

Meteorological Organization 2003). For daily bias cor-

rection of TAMDAR observations provided by several

hundreds of aircraft, the temporal changes in bias can

occur and should be accounted for.

Adaptive bias correction was first developed and

implemented for use with satellite data and applies

a variational framework (Derber and Wu 1998; Harris

and Kelly 2001; Auligné et al. 2007; Zhu et al. 2014). In

this approach, the observation operator in the cost

function is updated by adding a bias model, which con-

sists of a set of parameters and predictors. These pre-

dictors, often considered the key factors describing the

systematic errors, are assumed to be capable of repre-

senting the bias in the data. Along with the model state

variables, these parameters are updated during the cost

function minimization step, which seeks the increments

that minimize observational departures while fitting

as many observations from all data sources as possible

in the analysis. Thus, this approach is able to auto-

matically track and integrate real-time changes of

observations and forecast model variables. It should

be noted that some other observation types are

needed to anchor bias correction refraining from

compensating for model errors. Eyre (2016) has ad-

dressed that the effect of model errors in analysis

biases may increase when more observations are bias

corrected and a smaller proportion are used as ‘‘anchor’’

observations, or more weight is given to the observa-

tions to be bias corrected than the other ‘anchoring’

observations.

1DT 5 0.388MT(1 1 0.194M2)21DM, where T and M stand for

temperature observation and Mach number, respectively, and D
denotes the error of a variable. The equation can be seen in World

Meteorological Organization (2003; p. 10).
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Isaksen et al. (2012) extended the variational bias

correction method (VarBC) to correct the bias of air-

craft temperature observations by building a constant

bias model into the European Centre for Medium-

Range Weather Forecasts (ECMWF) global data as-

similation system. Their results demonstrate that both

biases and random error magnitude (standard devia-

tion) of temperature analyses and short-term forecasts

fit to aircraft and radiosonde temperature observations

were reduced. The improvements were largest at 250–

300hPa, where the commercial aircraft typically cruised

and thus the aircraft volume was large.

A similar scheme was implemented in the National

Centers for Environmental Prediction (NCEP) Grid-

point Statistical Interpolation (GSI) analysis system

by Zhu et al. (2015), who evaluated three extra bias

models, such as ascent and descent rates, quadratic as-

cent and descent rates, and log pressure, as well as the

one used by ECMWF. In their study, the bias correction

scheme cooled the global analysis around 200 hPa in

the Northern Hemisphere, and the forecasts were fitted

closer to radiosonde temperature observations without

degrading the fit at lower vertical levels. These con-

trasting experiments using different bias models dem-

onstrate that the predictors of ascent and descent rates

performed better than using predictors of constant and

log pressure, and the addition of the predictors of qua-

dratic ascent and descent rates produced higher skill

scores on average. The results suggest that the predic-

tors of ascent and descent rates had the ability to de-

scribe the bias of aircraft temperature observations,

while an extra nonlinear constraint term (e.g., quadratic

ascent and descent rates), is also needed to further im-

prove the analysis.

Multiple error sources contribute to the uncertainty

of aircraft temperature observations. In Isaksen et al.

(2012) and Zhu et al. (2015), apart from sources that

can be explicitly represented by the predictors of ascent

and descent rates, other sources are represented by

the constant-predictor term (first term) in the bias

model. To supplement past studies, we investigate the

TAMDAR temperature VarBC in a regional model, the

Weather Research and Forecasting Data Assimilation

system (WRFDA). By building a bias model, which

describes the regression relations between systematic

errors and predictors, we implement similar testing as

previously carried out by NCEP and ECMWF to ex-

amine the performance of various bias models.

In section 2, we provide an overview of the variational

bias correction (VarBC) methodology in WRFDA.

Section 3 describes the model configuration, database,

domain, and experimental setup. The implementation

of bias correction procedure and the impacts of VarBC

on TAMDAR temperature assimilation are presented

in section 4. In section 5, we illustrate a cold front pre-

cipitation case study. Finally, conclusions and discussion

are included in section 6.

2. WRFDA and new formulation

WRFDA is a multifunctional data assimilation model

that uses a variational framework, and either three/

four-dimensional variational or hybrid data assimilation

(Barker et al. 2004; Huang et al. 2009; Wang et al.

2008a,b; Schwartz et al. 2015) can be used. In this study,

the basic 3D-Var is employed.

a. Observation operator and bias model

Aiming to obtain a statistically optimal estimation

of the atmospheric state by combining observations y

with a background forecast xb, the cost function in (1) is

minimized iteratively in WRFDA with respect to the

model state x:

J(x)5
1

2
(x2 x

b
)TB21(x2 x

b
)

1
1

2
[y2 h(x)]TR21[y2 h(x)] , (1)

where the covariance matrices B and R are the per-

ceived error statistics of the background and observa-

tions, respectively; and h is an observation operator

(i.e., a transformation from model state to the observa-

tion space) including the grid interpolation. The super-

scripts 21 and T denote the inverse and adjoint,

respectively, of a matrix.

To solve (1) using an approximation to the best linear

unbiased estimate, the observation vector is assumed to

be bias-free. Since aircraft temperature observations

contain nonnegligible systematic errors, the observation

operator hmust be updated by adding a bias model b in

(2) in such a way that (3) is satisfied:

~h(x,b, y)5 h(x)2b(b, y) (2)

hei5 hy2 ~h(x,b, y)i5 0, (3)

where ~h is the modified observation operator, e denotes

the departure, and h i represents averaging over the

departure. The bias model b consists of a set of param-

eters b and predictors. These predictors are supposed

to account for the representation of the systematic error

sources in TAMDAR temperature observation vector

y. If N is the number of predictors, b can be written as

a linear combination of parameters bn and predictors

pn, n 5 1, 2, . . . , N, as in (4):
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b(b, y)5 �
N

n51

b
n
p
n
(y) . (4)

In the conventional practice of VarBC, b1 is assigned

to be the global offset, and the predictor p1 is a constant

of 1.0 (Dee and Uppala 2009). In the previously de-

scribed NCEP global data assimilation systems, the

aircraft ascent/descent rate (ADR) is used as the second

predictor (Zhu et al. 2015). However, in our initial

tests, the bias directly estimated by the bias model are

occasionally far beyond the reasonable error range,

especially during the phase of ascent when frequent

maneuvers are conducted. In variational bias correction,

the bias model is actually calculated by using the priori

parameters and the real time computed predictors at

analysis time. Therefore, the large ascent rates at one

time may overestimate the correction to bias when the

priori parameters are well estimated based on the past

normal ascent rates. This often happens in TAMDAR

measurements rather than ACARS and AMDAR be-

cause, compared with the large-size commercial aircraft

flying in preset route, the vertical motions and airways

of these small-size noncommercial aircraft and un-

manned aerial vehicle generating TAMDAR are often

adjusted according to local weather and environment

whenever necessary. Since it is known that the height

tendency of aircraft (i.e., ascent/descent rates) has a

typical large range, a scaling method is needed in order

to scale its magnitude tomatch with other predictor(s) in

bias model. To conduct the bias correction within the

typical error range of aircraft temperature measure-

ments (Benjamin et al. 1999; Gao et al. 2012), two

methods can be used. Either there can be an adjustment

to the update of parameters via a scaling term or a co-

efficient is provided to adjust predictors. It is noted that

the normalization method, regardless of the absolute

magnitude, is inappropriate in this case because the

absolute magnitudes of height tendency at different

analysis time do matter to the variational bias correc-

tion. To keep the scaling terms consistent in all sensi-

tivity experiments, a coefficient aADR of 0.1 is added into

the ascent/descent rate predictor as the benchmark of

ADR in this study. Thus, the bias model (4) is extended

to (5) and used for these aircraft phases of ascent, de-

scent and cruise, respectively:

b
ADR

(b, y)5b
1
1b

2
wa

ADR
, (5)

where w is the ascent/descent rate of aircraft (with units

of m s21), estimated by the observed height tendency.

Some error sources related to w (e.g., actual aircraft

maneuvers and time lag of data recording as the air-

craft moves in the vertical direction) can be explicitly

expressed in (5). Apparently, by setting aADR to 0.1,

the weight of the ascent/descent rate term in the bias

model is artificially reduced. To examine the sensitiv-

ity of bias model to aADR, one can adjust the constant

aADR. This question will be addressed later.

To investigate another key error source, we replace

the predictor of the ascent/descent rate with Mach num-

ber M, as expressed in (6):

b
MCN

(b, y)5b
1
1b

2
M , (6)

where the error sources related to Mach number are

explicitly represented (e.g., the incomplete correction

of air heating in the sensor chamber and the error in

the Mach number itself). In the eastern half of contig-

uous United States (CONUS), all aircraft installing

TAMDAR sensors are Dash-8 turboprops, which cruise

at altitudes generally below 500hPa, and have lower

Mach values than jets collecting measurements for

ACARS and AMDAR. The average Mach number for

turboprops is below 0.4, so it is not necessary to adjust

the predictor based on our initial tests.

Given the fact that no single predictor can fully

represent error information in the data, a bias model

describing multiple error sources [weighted multiple

predictors (WMP)] is designed in this study based on the

regression relations between OMB and various error

sources. This will be discussed in the following section.

b. Augmentation of model state

In WRFDA, a routine approach to estimating param-

eters in connection with uncertainties in components of

the cost function is the state augmentation method,

which, by augmenting the dimension of the model state,

adds uncertainty parameters to the other evolving model

state variables to be estimated during the cost minimi-

zation step. The method is used widely, for instance, in

the estimation of control variables a that determine the

weights of ensemble perturbations in hybrid variational-

ensemble data assimilation (Wang et al. 2008a,b). Similar

to our study, the estimation of parameters b in satellite

variational bias correction has been employed (Auligné
et al. 2007). Following this procedure, we compute the

parameters b jointly with the model state x. Thus, the

augmented model state Z can be expressed as

ZT 5
�
xT bT

�
(7)

and the cost function (1) becomes

J(z)5 (z2 z
b
)TB21

z (z2 z
b
)

1 [y2 ~h(z, y)]TR21[y2 ~h(z, y)]. (8)
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The assumption is made that the errors of parameters

b are uncorrelated with the errors of the model state

x. The background error covariance Bz, therefore, can

be expressed as a block-diagonal matrix:

B
z
5

"
B

x
0

0 B
b

#
, (9)

with Bx and Bb representing the background error

covariance of model state x and parameters b,

respectively.

Twomethods can be used to estimateBb. The analysis

error of parameters b at the previous cycle can be re-

garded as the background error of parameters b, which

is estimable by the inverse Hessian of the cost function

(8) (Zhu et al. 2015). The other feasible method is to

use the averaged observational errors of observations

involved, which indicates that the background of pa-

rameters b are assigned the same weights as these ob-

servations (Dee 2004; Sato 2007). In TAMDAR, each

aircraft with a unique tail number is not guaranteed to

takemeasurements at every analysis time; therefore, the

latter method is employed in this study to avoid the

impacts of flow-dependent parameter errors on extrap-

olating parameters.

c. Preconditioning

WRFDA employs the incremental formulation fol-

lowing Courtier et al. (1994). The background error

covariance of model state is transformed by the pre-

conditioning via the control variable in the incremental

cost function (Barker et al. 2004). For the quadratic

cost function (8), its condition number2 determines the

convergence properties of the minimization algorithm.

To make the cost function rapidly converge to a solu-

tion, the condition number should be reduced. This

can be achieved by introducing a preconditioning

operator, which transforms the model state to the

control variables, and meanwhile, forces the shape of

the cost function in region of the control variables

closer to spherical, so that the gradient of the cost

function points toward the minimum as much as pos-

sible (Bouttier and Courtier 2002). The shape of the

cost function (8) is described by its Hessian with re-

spect to parameters b:

›2J

›b2
5B21

b 1HT
bR

21H
b
, (10)

where Hb is the derivative of the observation operator ~h

with respect to parameters b (i.e., the values of the

predictors). Based on (10), when assuming that a bias

model contains n predictors, and N observations from

aircraft j with the observational error so are involved

in the variational bias correction procedure, the trans-

formation from control variables to model variables can

be expressed as

Tj 5

�
(Bj

b)
21

1
N

s2
o

P

�21/2
, (11)

where P is an n 3 n matrix denoting the averaged co-

variance of predictors. This transformation Tj should

be computed prior to minimization, and then multi-

plied by the control variables to complete the trans-

formation process.

3. Experiment design

The Weather Research and Forecasting (WRF)

Model (Skamarock et al. 2008) was run with 9-km grid

spacing covering the eastern half of contiguous United

States (Fig. 1) with a model top of 50 hPa. TAMDAR,3

along with the datasets collected from the Global Tele-

communication System (GTS),4 which included sur-

face land and marine reports, rawinsondes, atmospheric

motion vectors, and the aircraft-based data, such as

ACARS and AMDAR, were used in the data assimi-

lation process. The rawinsonde, ACARS, and AMDAR

temperature reports, well processed by internal quality

control and bias correction procedures5 in the National

Centers for Environmental Prediction (NCEP), are

also considered the anchor dataset during variational

bias correction. The satellite-based data are not em-

ployed in this study in order to avoid introducing the

local systematic errors in this small model domain. The

experimental domain and examples of spatial and

temporal distributions of TAMDAR and rawinsonde

(raob) observations are shown in Fig. 1. Typically,

TAMDAR provides two soundings, one during the

ascent portion of the flight and one during the descent.

This helps fill the spatial and temporal coverage gaps of

upper-air temperature observations around the Char-

lotte, North Carolina, airport. TAMDAR from these

regional aircraft complements RAOBs normally from

day 1 at 1200 UTC to day 2 at 0000 UTC daily (0700–

1900 eastern standard time).

2 The condition number is defined as the ratio between the

maximum and minimum eigenvalues of Hessian of cost function,

which measures the ellipticity of the isosurfaces of cost function.

3 Provided by Panasonic Avionics Corporation.
4 Available in PrepBUFR format from NCEP.
5 www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/

document.htm.
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To evaluate the performance of TAMDAR temper-

ature VarBC, parallel experiments were conducted.

CTL is the control run, which assimilated observations

from TAMDAR and GTS. ADR, MCN, and WMP

are identical to CTL in every way except that they run

the VarBC scheme by using the corresponding bias

models. Additionally, we ran a version titled ADR05

and ADR10 by adjusting the coefficient aADR from 0.1

in (5) to 0.5 and 1.0 for the purpose of inspecting the

impacts of predictor weights on bias model.

These experiments were started on 1 February 2017

and lasted six weeks ending on 15 March 2017. This

assimilation employs the partial cycling data assimila-

tion scheme as depicted in Fig. 2, which initializes at

1200 UTC each day and run five times per day (day 1 at

1200 UTC to day 2 at 0000 UTC) with 3-h cycling. In

detail, the first data assimilation procedure in WRFDA

starts at 1200 UTC in each day, and its background is

a 3-h forecast produced from regional model WRF,

which is initialized at 0900 UTC by the interpolation

of Global Forecast System (GFS) short-term forecast.

At other analysis time, the previous 3-h WRF model

forecast is used as a background to produce a new anal-

ysis in WRFDA. The time window of the assimilation

FIG. 1. The experimental domain and the spatial and temporal distributions of temperature

observations of TAMDAR and rawinsonde (raob) at 1200 UTC 1 Feb–0000 UTC 2 Feb 2017

with a timewindow of61.5 h. TheUTC times are represented by colors. The observation count

is shown by UTC time in the legend.

FIG. 2. Schematic of 3-h partial cycling data assimilation and forecast configuration.
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is 21.5/11.5 h on either side of the analysis time. All

experiments generate 24-h forecasts for which the lat-

eral boundary conditions are provided by NCEP 0.58 3
0.58 global forecasts. The partial cycling in daylight is

employed partly because TAMDAR takes measure-

ments principally in local daylight in order to monitor

convective activity, and moreover, restarting regional

cycling daily by using GFS short-term forecast may limit

the accumulation of model errors derived from imper-

fect physics. It should be noted that the parameters kept

updating consecutively for all six weeks of experiments,

even while the partial cycling data assimilation scheme

was being used.

4. Performance of VarBC

In this section, the results are presented in the fol-

lowing order: To begin, we will show the potential value

of TAMDAR temperature observations. Second, the

statistical relations between predictors and innovations

are illustrated. Additionally, the evolution characteris-

tics of terms in the bias models in these sensitivity ex-

periments are contrasted and analyzed. A total of 13

aircraft are used in this study and the aircraft with tail

number 0751 is taken as a key example due to its good

data continuity. Finally, the impacts of VarBC on ana-

lyses and ensuing forecasts are verified.

a. TAMDAR temperature OMB and OMA

The statistics of TAMDAR temperature observation-

minus-background (OMB) and observation-minus-

analysis (OMA) in CTL are presented in Fig. 3. The

continuous data stream demonstrates that TAMDAR

are the only available upper-air temperature observa-

tions during some of the analysis times in this region.

The average standard deviation of TAMDAR is com-

parable to that of ACARS and raob for both OMB and

OMA, which suggests that TAMDAR temperature

observations are able to provide useful information for

analysis. However, as evidenced by the bias changing

from 0.593K in OMB to 0.088K in OMA, the analysis is

contaminated because the biases in TAMDAR are al-

most fully transferred into the analysis during the data

assimilation process.

b. Predictors in WMP bias model

To correct the bias, the key error sources dominating

the systematic errors should be included and addressed

FIG. 3. The time series of standard deviation (STDV, thick lines) and bias (thin lines) of

temperature (a) observation-minus-background (OMB) and (b) observation-minus-analysis

(OMA) of TAMDAR (red lines), ACARS (blue lines), and raob (black lines) below 500 hPa in

the control experiment (CTL). All STDV statistics are shown by initially adding 1.0 for better

visualization. The average values of STDV and bias are summarized in the first and second

columns of the legends, respectively. The discontinuous lines indicate that observations are not

available at these analysis times.
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via a bias model in order to truly reflect the systematic

errors in TAMDAR temperature measurements. In

other words, the predictors in bias model need to con-

tain variables which OMB statistics are rapidly respon-

sive to. To investigate these predictors, the regression

relations between OMB and some potential error

sources are presented. Figure 4 shows scatterplots of

TAMDAR temperature OMB versus aircraft height

tendency (w), Mach number (Mach), temperature ten-

dency (dT/dt), and the observed temperature (T), re-

spectively. The black dot represents the average of a set

of data which fall within a box binned according to the

variable of the x axis. Any dot is marked only when the

number of data falling in a binned box exceeds 100.

Generally, OMB is approximatively proportional to

height tendency (Fig. 4a) and inversely proportional to

temperature tendency (Fig. 4c). It is expected because

the reading time lag produces a warm bias during ascent

and a cold bias during descent. It should be noted that

positive w and negative dT/dt (except temperature in-

version) correspond with ascent, and vice versa. More-

over, aircraft maneuvering and thermal hysteresis are

more frequent and sharper during ascent than descent,

especially given that ascents typically involve both steep

vertical angles and greater acceleration. Thus, larger

warm bias is generated during ascent than descent.

These two linear regressions demonstrate that bias in

TAMDAR temperature observation is rapidly responsive

FIG. 4. Scatterplots of TAMDAR temperature observation-minus-background (OMB) of aircraft 0751 in control

experiment (CTL) and predictors (pred) in the WMP bias model (12) vs (a) aircraft ascent and descent rates (w),

(b) Mach number (Mach), (c) temperature tendency (dT/dt), and (d) the observed temperature (T). The black dots

represent the OMB statistics and the red circles represent the predictors in bias model (12). The black and red

dashed lines are the linear regression curves for OMB and predictors, respectively.
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to the tendencies of height and temperature. In real-

ity, the temperature tendency is not independent from

the height tendency due to the adiabatic lapse rate of

air. It seems straightforward enough to consider either

height tendency or temperature tendency as a predic-

tor. However, this becomes unwieldy during cruise

of aircraft. The tendencies of height and tempera-

ture are approximately zero in average during cruise

when light ascent and descent maneuvers are con-

ducted (i.e., hwi ; 0, hdT/dti ; 0). It is understandable

that the contribution of reading time lag (denoted by

dT/dt) to bias during cruise is negligible. However, as

seen in Figs. 4a and 4c, when the tendencies of height

and temperature are equal to zero,OMB still reach up to

0.740 and 0.579K, respectively. These values far exceed

the typical errors which are estimable by the equation

related to Mach number effect (World Meteorological

Organization 2003). Apparently, besides the reading

time lag and air heating caused by adiabatic compres-

sion (represented by Mach number), aircraft maneu-

vering and thermal hysteresis also do contribute to the

bias. Following that, a reasonable interpretation is that

the extra warm bias in addition to the effect of reading

time lag and Mach number is mainly derived from the

thermal lag of the metal probe and unstable measure-

ments during aircraft maneuvers which can alter the

airflow, even during cruise. Thus, the contribution of

aircraft maneuver (represented by w) to bias must be

considered effect accumulated, that is, the contribution

should not be offset during cruise when light ascent

(positive w) and descent (negative w) are averagely

conducted. To achieve this, we define an initial predictor

containing height tendency as (0.1w 1 2). In addition,

the linear regression function of OMB statistics versus

height tendency cannot be directly employed for pre-

dictors because the OMB statistics contains biases

in both observations and model. Here we assume the

magnitude of each predictor contributing to 60% of

OMB statistics in average. In the case of height ten-

dency, a coefficient of 0.2 applies for the initial pre-

dictor, and the final predictor becomes (0.1w1 2)3 0.2.

The change of predictor with height tendency is shown

in red circles in Fig. 4a. In fact, the simulation by pre-

dictor is not strictly 60% of OMB statistics because the

simple coefficient is employed in predictors. Depending

on locations and times of measuring, the percent might

be lower or higher than truth, and thus, not optimal.

In Fig. 4b, the linear regression between OMB and

Mach number results from several aspects, such as

Mach number errors, incomplete correction of the air

heating from adiabatic compression, thermal lag, and

other possible factors. It is complicated to describe

these possibilities and their interaction in a bias model.

In general, Mach number increases with the flight alti-

tude of aircraft. More observations with large temper-

ature OMB tend to appear at lower Mach numbers,

which often correspond to the start of ascent and end

of descent with large height tendency (not shown).

Following that, the predictor related to Mach number

simply employs the inverse proportion relation to OMB

and is scaled as (10 Mach)21, denoted by the red circles

in Fig. 4b. The magnitude of predictor is 64.84% of

OMB on average.

Conversely, the predictor of the observed tempera-

ture (T) needs more consideration. As we discussed

above, the larger OMB typically corresponds with lower

Mach number, which is often located at lower height

with higher temperature. Thus, it is somewhat expected

to see that OMB increases with the observed tempera-

ture (Fig. 4d). Because of the adiabatic lapse rate of

air, temperature is a function of height and thus ap-

proximately equivalent in the predictor sense to pres-

sure, which was used as predictor in Zhu et al. (2015).

However, this temperature predictor doesn’t perform

well in correcting bias during ascent and descent be-

cause temperature observations are averaged vertically

in order to calculate the predictor. The temperature av-

erage is not responsive to OMB in a season. Therefore,

we consider the temperature predictor only as a constraint

in this study, which changes interseasonally, by scaling

the observed temperature by a large number of 2000.

Based on these discussions above, a bias model

containing the weighted multiple predictors is designed

in (12):

b
WMP

(b, y)5b
1
1b

2
(0:1w1 2)3 0:21b

3
(10M)21

1b
4

dT

dt
3 51b

5

T

2000
, (12)

where T is the observed static temperature, and dT/dt

is the temperature tendency between two consecutive

measurement locations. The fourth term expresses the

contribution of data reading time lag to the overall bias,

and the fifth term relates the temperature being mea-

sured to the sensitivity of the sensor to the atmospheric

environment or seasonal factors (Ballish and Kumar

2008). Within a given season, the last predictor should

become stable, and thus may be approximately equiva-

lent to certain variables that scale nearly linearly with

height (e.g., pressure). Indeed, pressure was explicitly

used as a predictor in Zhu et al. (2015). Additionally,

other existing uncertainties, such as calibration and

correction for exposure, de-icing, and wet evapora-

tion of probe, are unlikely to be estimated during mini-

mization. As a result, these uncertainties are expected to be

reflected by the constant-predictor term. These coefficients
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in (12) are given based on the simple regression relations

between OMB and predictors in direct or inverse pro-

portion, therefore, are not optimal. In fact, one can cor-

rect the bias by vertical levels based on the regression

relation, when/where a large sample of aircraft are avail-

able to take measurements at each target height level and

each aircraft is equipped with the unified sensor with same

measurement accuracy.

c. Initialization and cycling of bias models

In the bias models, the predictors are functions of

aircraft measurements while the parameters need to

be obtained by minimizing the cost function (8). In the

absence of any prior information, all parameters are

initially set to 0.2, which, during the first data assimila-

tion window, will guarantee a bias correction of ap-

proximately 0.2K depending on the phase of flight. The

update of parameter is independent from its first guess

in incremental VarBC, in other words, the obtained

parameter is not affected by the initial estimation

value. However, using a positive number as an initial

estimation of parameters can decrease the time spent in

cycling these parameters since the positive bias in air-

craft temperature observations is well addressed.

Figure 5 shows the evolution of terms in the bias

models in ADR for aircraft 0751 at the phases of ascent,

FIG. 5. The evolution of terms in the ADR bias model (5) during (a) ascent, (b) cruise,

and (c) descent for aircraft 0751. The const and w series correspond to terms in bias model

(5), for predictors of constant and vertical motion rates (represented by height tendency),

respectively. The average value of each term from 1200 UTC 14 Feb to 0000 UTC 15 Mar

2017 is shown in legend. The average bias model is shown on top. The blue and orange

dashed lines in (a) represent thew terms in bias model (5) in ADR10 andADR05, scaled by

1/2, respectively.
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cruise, and descent. Overall, the parameters adjust

rapidly in the first few days of the run and then settle

down gradually. The statistics of OMB in Fig. 4a dem-

onstrate that the bias during ascent is larger than during

descent, and the cruise bias is intermediate between the

ascent and descent biases. However, due to averaged

height tendency (w) being approximately equal to zero

during cruise, the bias correction represented by w in

ADR, which is only 0.004K, is evidently underestimated

(Fig. 5b). As a result, almost all error sources have to be

reflected by the constant-predictor term, leading to a

model that cannot discern the physical significance of

particular contributors to the bias. A potential weakness

is that bias correction could compensate for model er-

rors under the weak constraints of the predictor. Such

evidence can be found by the larger bias correction at

cruise (0.610K) than ascent (0.602K), which conflicts

with the OMB statistics in Fig. 4a.

To inspect the impacts of scaling the predictor ofw on

bias model, we run ADR05 and ADR10 by adjusting

aADR from 0.1 in ADR to 0.5 and 1.0. The results using

aircraft 0751 at ascent demonstrate that compared with

ADR, the uncertainty of the w term increases signifi-

cantly in ADR05 and ADR10 (Fig. 5a). The unsteady

bias correction in ADR05 and ADR10 makes it less

likely to obtain statistically meaningful estimates of

parameters by long-term cycling data assimilation (often

overestimating), and thus, it fails to use these esti-

mates to extrapolate bias corrections accurately into

the next cycle.

It must be mentioned that one reviewer considered

that the results in Fig. 5 suggested that the w predictor

was very noisy and that smoothing w, as in Zhu et al.

(2015), should be tried. This algorithm did achieve the

goal in Zhu et al. (2015). However, the predictor of w is

vertically averaged for one sounding (ascent or descent)

prior to estimating the bias model in this study. The

vertically averaged ascent/descent rates are not sensitive

to the smoothing algorithm. Therefore, we reserve our

views about this issue for further investigation.

By comparing ADR with MCN in Fig. 6, the bias

corrections are comparable, especially during the phases

of cruise and descent. Although the second terms in the

bias models demonstrate differences of 0.1K at cruise

and 0.145K at descent between MCN and ADR, the

constant-predictor terms take up most of the difference.

VarBC does not appear to be sensitive to the second

predictors used in ADR and MCN. Moreover, as dis-

cussed above, aircraft normally have larger Mach

number during cruise than ascent and descent. How-

ever, the bias corrections represented by the Mach term

are larger during cruise than ascent and descent, which

is opposite to the linear regression relation of OMB

versus Mach number presented in Fig. 4b. The results

indicate that VarBC with a plain bias model is prone

to being dominated by other factors and has little ca-

pability to automatically correct the problematic statis-

tical relationship between the systematic errors and the

predictors described in the bias model.

In WMP, as shown in Fig. 7, the height tendency (w)

plays the leading role among predictors except during

descent. Compared with the negligible bias correction

represented by w in ADR (Fig. 5b), the bias correction

represented byw inWMP suggests that the bias at cruise

(Fig. 7b) reflects the accumulated biases during light

ascent and descent phase of flight. It also demonstrates

that the contribution of the reading time lag term

(dT/dt) to the bias correction is well fit to its typical value

in each flight phase. However, concern was raised by

one reviewer that the height tendency w and tempera-

ture tendency would be highly anticorrelated making it

unsuitable to use them together as predictors. In reality,

the correlation coefficient is20.33 for ascents and20.13

for descents: making their use together acceptable but

again raising questions about noise in the predictors.

Unlike ADR and MCN, the bias correction is slightly

smaller at cruise than that at ascent in WMP, which is

expected because the contributions from Mach number

and reading time lag predictors are slightly reduced at

cruise. These results demonstrate that the bias model

(12) captures the bias in TAMDAR temperature ob-

servations qualitatively and quantitatively better than

(5) and (6).

Although the same Dash-8 turboprops aircraft are

used in this study, the bias corrections are different for

these aircraft according to the error sources at the

measuring time. In WMP, the minimum correction is

0.139K for aircraft 0862 while the maximum correction

is 0.69K for aircraft 1004. Nonetheless, the evolutions of

bias models are qualitatively consistent among these

aircraft.

d. Impacts of VarBC on analyses and forecasts

Figures 5–7 indicate that these bias models become

stable after the first two weeks of cycling. From that

model time, we then verify analyses and forecasts for

another four weeks from 1200 UTC 14 February to

0000 UTC 15 March 2017.

The statistics of TAMDAR temperature OMB in

CTL, ADR, MCN, and WMP and the TAMDAR ob-

servation count in CTL are presented in Fig. 8. Com-

pared with CTL, the application of VarBC corrects

the warm bias at all height levels where TAMDAR

observations are present, and WMP further reduces

the bias by 0.068 and 0.058C compared with ADR and

MCN, respectively. The random errors in observations
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(taken from the standard deviation of OMB) are re-

duced as well because the temperature observations

deviating substantially from the background are made

considerably more accurate after employing the

VarBC. The black dots in left panel suggest that the

difference of OMB between WMP and CTL is signif-

icant at or above the 95% confidence level by applying

the t test.

The temperature increments produced by VarBC not

only generate increments on other model variables but

also can be extended beyond the original observation

locations by using the information in the background

error covariance matrix. Figure 9 shows the differences

of the temperature analysis in WMP from CTL at

1200 UTC 1 March 2017. Although the observations

are distributed along narrow flight tracks, the incre-

ments produced by VarBC spread out smoothly and

extend to a wider area in both horizontal and vertical

dimensions. This information transmission is important

for enlarging the influence range of these observations.

Figure 10 presents the statistics of ACARS and

TAMDAR temperature OMA in CTL, ADR, MCN

and WMP. The analyses become fit closer to both

ACARS and TAMDAR observations by employing

VarBC, and the application of WMP bias model fur-

ther reduce the mean analysis differences as expected.

The differences produced by VarBC are visible in 9-h

forecasts (Fig. 11), however, these improvements are

wiped out in this small domain after 9 h when the air-

flow from lateral boundary starts to move in the verifi-

cation domain.

5. A cold frontal rainfall event

In this section, TAMDAR temperature VarBC is in-

vestigated using a cold frontal rainfall event that occurred

FIG. 6. As in Fig. 5, but for MCN.
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during the period of the six-week experiments. We

explore how VarBC affects the prediction of pre-

cipitation location and intensity. The precipita-

tion forecast is verified against the NCEP stage

IV analysis with 4-km resolution, which is a mosaic

from the regional hourly/6-hourlymultisensor (radar1
gauges) precipitation analyses produced by the 12

River Forecast Centers over the continental United

States (Lin and Mitchell 2005). The synoptic circula-

tion situation is described, and then the results are

presented.

a. Synoptic circulation

A strong stream of cold and dry air from the west

flowed nearly perpendicular to isotherms toward the

east-central United States, joining with the southwest

warm and wet jet stream by 0000 UTC 2 March 2017

(Fig. 12a). The dewpoint deficit was less than 2.8K

within the wet core area of 10 g kg21 indicated by

blue lines. At that time, a cold front formed along

the North Carolina (NC)/Tennessee (TN) border,

extending through southwestern Virginia (VA). The

simulated maximum reflectivity (not shown) dem-

onstrates that some mesoscale convective cells were

generated ahead of the cold frontal surface along the

southwest air mass. The cold front and the transverse

trough were intensified by 0600 UTC 2 March 2017

(Fig. 12b) which sharply strengthened the tempera-

ture decrease along the front near the western border

of NC and VA. The stage IV analysis shows that the

precipitation was distributed mainly downstream of

TAMDAR coverage along a band which is oriented

northeast–southwest in central NC and northern

SC. Based on this weather pattern and location, the

TAMDAR temperature VarBC is expected to have

impacts on precipitation forecasts.

FIG. 7. As in Fig. 5, but for WMP.
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b. Impacts of VarBC on analyses and forecasts
of wind and humidity

The typical analysis increments of wind and relative

humidity (RH) produced by TAMDAR temperature

VarBC are presented in Fig. 13. As shown in Fig. 2, the

same background forecast is used as a first guess in data

assimilation procedure in different experiments at each

1200 UTC instance, therefore, the differences of ana-

lyses in Fig. 13 are completely generated by the appli-

cation of VarBC.

The background error covariance matrix employed

does not include the covariances between specific hu-

midity and other model variables. Therefore, the tem-

perature increments derived from temperature VarBC

cannot impact the specific humidity analysis in WMP.

As a result, as shown in Fig. 13, RH increases in the

environment, which becomes cooler after warm bias is

corrected (Fig. 9), when specific humidity in the analysis

is unchanged. In general, the increased RH may in-

tensify the prediction of precipitation intensity in WMP

because the threshold for RH to reach a condition for

precipitation will be easier to reach in WMP than CTL.

It is also seen that anticyclonic wind increments are

produced, which reflect the geostrophic adjustment

of wind to the temperature correction. Although the

magnitude of these wind increments ia small in the

analysis, the information is able to produce a notable

influence on the wind forecasts in a nonlinear fore-

cast model.

c. Verification of precipitation prediction

The stage IV analysis and 15mm isolines of 6-h ac-

cumulated precipitation forecasts in CTL and WMP,

valid 0600 UTC 2 March 2017, are presented in Fig. 14.

Overall, CTL andWMP both capture themain observed

characteristics of precipitation distribution. From the

isolines of 15-mm precipitation, the precipitation loca-

tion in central North Carolina predicted in CTL has

a southward displacement error, which is noticeably

reduced inWMP. Based on a point-to-point threat score

(TS; Schaefer 1990) and a neighborhood-based fractions

skill score (FSS; Roberts and Lean 2008) (not shown

here), WMP outperforms CTL at thresholds of 25mm

and less while there is little or no skill for precipita-

tion amounts of 30mm and more because both CTL

and WMP have eastward displacement errors for the

FIG. 8. (left) The vertical profiles of standard deviation (STDV, dotted lines) and bias (solid lines) of TAMDAR

temperature observation-minus-background (OMB) in CTL, ADR, MCN, and WMP, and (right) the count of

TAMDAR temperature observations assimilated in CTL from 1200 UTC 14 Feb to 0000 UTC 15 Mar 2017. The

accumulated count percentage from the surface level in CTL is presented in the right panel. The black dots in the

left panel suggest that the difference of OMB betweenWMP and CTL is significant at or above the 95% confidence

level by applying the t test.
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observed maximum precipitation area located in north-

ern South Carolina (SC). Although the improved wind

by WMP intensify the southwesterly jet which, com-

bined with the RH increments generated by VarBC,

contributes to the RH differences of up to 30%, pre-

cipitation is still underestimated in this region by WMP.

The results demonstrate that in this case, the imple-

mentation of temperature VarBC improves the pre-

diction of precipitation location and intensity mainly

by improving the forecasts of wind-related synoptic

circulation and humidity. However, the positive RH

increments are always produced in a colder analysis

after using VarBC as discussed above. The potential

weakness is that impacts of VarBC on analysis and

forecast may change by cases. To optimize the applica-

tion of VarBC, the background error covariance matrix

containing the covariance between specific humidity and

other model variables should be provided in data as-

similation procedure. The hybrid ensemble-variational

data assimilation (Wang et al. 2008a,b; Schwartz et al.

2015) and the application of multivariate background

error statistics (Chen et al. 2013) may overcome the

persistent increase of RH in the analysis due to the

correction of the warm bias in TAMDAR temperature

observations.

6. Discussion

This paper investigates the performance of varia-

tional bias correction for TAMDAR temperature ob-

servations in WRFDA model. The potential benefit of

this method is evaluated over the eastern half of the

CONUS for a six-week period by using TAMDAR ob-

servations collected around Charlotte airport in North

Carolina. The indirect impacts of the VarBC on pre-

cipitation prediction are explored using a cold front

precipitation event.

Besides using the predictor of aircraft height ten-

dency, which is similar to methods used elsewhere in the

NCEP and ECMWF global data assimilation systems,

we try extra predictors related to the well-known error

sources, such as Mach number, the temperature ten-

dency between two consecutive measuring locations,

and the static temperature measured by aircraft. The

four predictors together are expected to represent the

contributions of aircraft maneuvers, incomplete cor-

rection of air heating caused by adiabatic compression in

sensor chamber, data reading time lag, and thermal

hysteresis of the metal. Although these ‘‘bad’’ data

with roll angles exceeding a certain threshold during

frequent maneuvers have been eliminated from the

dataset, the remaining ‘‘bad’’ data with light maneu-

vers and roll angles are still used which contribute to

the bias.

Results demonstrate that the VarBC approach works

well by automatically correcting TAMDAR tempera-

ture biases, and produces better analyses and short-

range forecasts, even when using a relatively simple bias

model. However, some weaknesses are noticed in the

basic bias model formulations. For example, when using

height tendency as a predictor, the error sources related

to height tendency cannot be explicitly expressed during

cruise due to the averaged predictor value being ap-

proximately equal to zero. Thus, the ability of VarBC

to identify the source of bias in innovations becomes

weak and could make the bias correction compensate

FIG. 9. (a) The departure of the temperature analysis in WMP

from CTL (WMPminus CTL) at 1200 UTC 1Mar 2017 at 750 hPa;

(b) the pressure–longitude cross section along 34.88N illustrated by

a red solid line in (a). The TAMDAR observation locations are

indicated by dots and the observational pressures are denoted by

the vertical color bar in (a).
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for model errors instead. Further, when using Mach

number as a predictor, the bias corrections repre-

sented by the Mach number term at different phases

of aircraft flight fail to match the linear regression

relation of OMB versus Mach number. This suggests

that VarBC has little capability to correct inaccurate

statistical relations between variables using such a

simple bias model.

To remove these weaknesses, the bias model (12) is

designed, which contains the weighted multiple pre-

dictors and describes the linear regression relations be-

tween innovations and predictors. Results demonstrate

that this bias model removes bias in TAMDAR tem-

perature observations qualitatively and quantitatively

better than the simpler bias models. As expected,

TAMDAR temperature innovations are further re-

duced, and the analyses and short-range forecasts are

improved.

A tricky practice conducted for scaling ascent/descent

rates is to use a constant aADR in bias models (5) and

(12). To make these predictors match with other pre-

dictors in magnitudes, a scaling process is necessary.

However, the absolute magnitudes of height tendency

at different analysis time do matter to the variational

bias correction. Thus, the normalization method is

inappropriate in this case. One reviewer suggested

that a smooth algorithm should be employed to re-

duce the noises in the predictors of ascent/descent

rates. Future work will focus on refining the ability

FIG. 10. The vertical profiles of standard deviations (STDV, dotted lines) and biases (solid lines) of temperature

observation-minus-analysis (OMA) in CTL, ADR, MCN, and WMP for (a) TAMDAR and (b) ACARS from

1200 UTC 14 Feb to 0000 UTC 15 Mar 2017. The black dots suggest that the differences of OMA of ACAR and

TAMDAR between WMP and CTL are significant at or above the 95% confidence level by applying the t test,

respectively.

FIG. 11. The rmse of temperature forecasts in CTL, ADR,MCN,

andWMPfit toACARS temperature observations by forecast lead

time from 1200 UTC 14 Feb to 0000 UTC 15 Mar 2017. The black

dots suggest that the difference of temperature rmse between

WMP and CTL is significant at or above the 95% confidence level

by applying the t test.
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of a smooth algorithm to describe the predictors of as-

cent/descent rates.

The indirect impacts of VarBC on precipitation pre-

diction are examined for a cold front precipitation event

that occurred during the experimental period. VarBC is

able to improve the forecasts of precipitation location

and intensity by improving the prediction of wind-

related synoptic circulation and humidity. However, due

to the employment of the background error covariance,

which does not include the covariance between specific

humidity and other model variables, positive relative

humidity increments are always produced by the cor-

rection of warm bias in TAMDAR temperature obser-

vations. As a result, VarBC has capability to improve

precipitation prediction for some cases but also may

overestimate precipitation for other cases. To extract

the maximum benefit from VarBC, a background error

covariance matrix containing the covariance between

FIG. 13. The differences of analyses of relative humidity (%,

shaded) and wind vectors at 850 hPa between WMP and CTL at

1200 UTC 1 Mar 2017.

FIG. 12. Temperature (8C, red lines), specific humidity (g kg21,

blue lines), height (m, black lines), and wind vectors at 850 hPa in

(a) analysis and (b) 6-h forecast in WMP, initialized at 0000 UTC 2

Mar 2017. The predicted 6-h temperature changes are shaded in (b).

FIG. 14. The stage IV precipitation analyses (shaded) and 15mm

isolines of 6-h accumulated precipitation forecasts in CTL (blue

lines) and WMP (green lines), valid at 0600 UTC 2 Mar 2017.
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specific humidity and other model variables should be

employed.

Overall, these results are encouraging; however,

the bias model with the weighted multiple predictors

in (12) is not optimal when it comes to the linear re-

gression and the coefficients. It is practical to apply

more sophisticated regression relations between in-

novations and predictors by a bias model or advanced

methodology.

Another way to improve the representativeness of

systematic error sources could be to use extra predictors,

for example, the maneuvers, which usually involve a

substantial roll angle, produce significant errors; or hu-

midity, which could lead to a cold bias when any evap-

oration takes place during the period of air heating in

the sensor chamber. Therefore, the roll angle of aircraft

and humidity may further improve the modeling of

bias. It is noted that the humidity changes rapidly with

height, and therefore, it is not straightforward to define

a coefficient for such a predictor.

Besides the Charlotte airport in North Carolina,

TAMDAR also provides observations for some other

major hubs over theCONUS(e.g.,NewYork, Philadelphia,

Seattle, etc.), as well as Alaska, Mexico, Europe, and

Asia. Local climates, geographic environments, and

aircraft types may cause additional diverse systematic

biases, which would require considerable care in build-

ing bias models with more general applicability. There-

fore, VarBC may be more useful when implemented

on a regional basis. In addition, a study over a larger

domain may improve the understanding of applicability

of VarBC.
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